Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. TRUE False If A, B are mutual exclusive events that are independent, then $P(A)=0$ or $P(B)=0$.

Solution: If A, B are mutually exclusive, then $A \cap B=\emptyset$. Then if they are independent, then $P(A \cap B)=0=P(A) P(B)$ so $P(A)=0$ or $P(B)=0$.
2. True FALSE If A, B are independent events and B, C are independent, then A, C are independent.

Solution: We can take A and C to be the same event.

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (5 points) When rolling a fair 6 -sided die, are the events A that the number rolled is greater than or equal to 3 , and B that the number rolled is odd, independent?

Solution: We just need to check $P(A \cap B)=P(A) P(B)$. On the left side, the probability is $\frac{2}{6}$ from having 3,5 , and $P(A)=\frac{2}{3}$ and $P(B)=\frac{1}{2}$ so indeed $P(A \cap B)=P(A) P(B)$. So they are independent.
(b) (5 points) There are 10 red and 10 blue balls in a bag. Someone randomly picks out a ball and then places it back and puts 10 more balls of that color into the bag. Then you draw a ball. What is the probability that the 10 balls added were red, given that you drew out a red ball?

Solution: We use Bayes Theorem to get

$$
\begin{gathered}
P(\text { AddRed } \mid \text { DrawRed })=\frac{1}{1+\frac{P(\text { DrawRed } \mid \text { AddBluee }) P(\text { AddBlue })}{P(\text { Draw Red } \mid \text { AddRed }) P(\text { AddRed })}} \\
=\frac{1}{1+\frac{10 / 30 \cdot 1 / 2}{20 / 30 \cdot 1 / 2}}=\frac{1}{1+1 / 2}=\frac{2}{3}
\end{gathered}
$$

